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In this paper we use a continuum model in two spatial dimensions to study the dynamics of the cortex during
natural sleep, including explicitly the effects of two key neuromodulators. The model predicts that a number of
states could be available to the cortex. We identify two of these with slow-wave sleep and rapid eye movement
�REM� sleep, and focus on the transition between the two. Eigenvalue analysis of the linearized model,
together with simulations on a two-dimensional grid, show that a number of oscillatory states exist; the
occurrence of these is particularly dependent upon the duration in time of the inhibitory postsynaptic potential.
These oscillatory states are similar to the cortical slow oscillation and certain types of seizure. Power spectra
are evaluated for different parameter sets and compare favorably with experiment. Grid simulations show that
transitions between cortical states �e.g., slow-wave to REM� can be seeded at any point in space by random
fluctuations in subcortical input.
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I. INTRODUCTION

Measurements show that many areas of the brain are ex-
tremely active during sleep, and the purpose of this activity
remains mysterious. The electroencephalogram �EEG� sig-
nal, which is easily detected with scalp electrodes, is pre-
dominantly derived from the averaged dendritic field poten-
tials of assemblies of pyramidal neurons in the cerebral
cortex. The EEG exhibits many features, containing frequen-
cies ranging from dc through to �100 Hz, and complicated
wave forms such as spindles and K-complexes �1�. The EEG
of natural sleep is strongly correlated to the stage of sleep; it
exhibits high-amplitude low-frequency oscillations during
slow-wave �deep� sleep, but low-amplitude high-frequency
oscillations during rapid eye movement �REM� sleep. It is
particularly curious that the EEG obtained from a subject in
REM sleep is very similar to that obtained from the subject
while awake-for this reason REM sleep is often referred to as
paradoxical sleep. Measurements of EEG have been comple-
mented by intracellular measurements of soma potentials,
particularly from the cortex and thalamus, made by Steriade
et al. �2� and Sanchez-Vives and McCormick �3�.

In this paper we address natural sleep with a dynamic
continuum model. Two forms of model have been used re-
cently to address the origins of EEG wave-forms; first,
neuron-by-neuron models such as those of Bazhenov et al.
�4�, Hill and Tononi �5�, and Compte et al. �6�; and secondly
continuum models, introduced by Freeman �7� and Nunez �8�
where averages are taken over a population of neurons.
These latter models are generally more useful for the under-
standing of EEGs, since the EEG itself is a continuum effect
with a single scalp electrode sampling the activity from
many thousands of neurons. Models of this form have been

developed by Wright and Liley �9�, Robinson et al. �10�,
Liley et al. �11�, and Rennie et al. �12�. The dynamics of
such systems have been studied in one-dimension by Hutt et
al. �13�, who looked at instabilities and emerging spatial and
temporal structures �e.g., travelling waves�, and Kramer et
al. �14�, who described temporal instabilities in terms of bi-
furcations. Large scale simulations have recently been car-
ried out for anaesthetic-induced sleep by Bojak and Liley
�15,16�. For natural sleep, Steyn-Ross et al. have described a
much simplified continuum system driven by neuromodula-
tors �17�. To develop previous work we now apply a dynamic
continuum model in the manner of Liley et al. �11� in two
spatial dimensions to natural, rather than induced, sleep in-
cluding explicitly the effects of key neuromodulators. We
identify a dynamic instability and focus on the transition
between slow-wave and REM sleep.

II. THE SLEEP MODEL

The cortex consists of a number of macrocolumns each
consisting of around 100 000 neurons in a volume of
�1 mm2 area by �1 mm thick. We model the cortex as a
two-dimensional continuous area of macrocolumns. We fol-
low the mean-field continuum approach of Liley et al. �11� in
using a set of coupled differential equations in time and
space to describe the excitatory and inhibitory soma poten-
tials Ve and Vi within the cortex, and the time-evolution of
postsynaptic potentials �PSPs�. This approach, in which the
postsynaptic fluxes � jk �where j and k can correspond to
excitatory e or inhibitory i neuron populations� are described
by differential equations, is equivalent to approaches that
describe the buildup of potentials in terms of time-integrated
inputs, for example Jirsa and Haken �18�. We use a standard
wave equation, in the manner of Robinson et al. �10� to
describe the propagation of presynaptic fluxes � jk from one
part of the cortex to another. We model the subcortical input
with white noise.
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It is important to note that individual firing events are not
modelled explicitly, instead the effects of a firing of a popu-
lation of neurons are considered. The complete set of equa-
tions describing the macrocolumn averages of soma potential
and synaptic fluxes, as a function of space and time, are
described in Refs. �17,19� and given in the Appendix.

Unfortunately, many of the parameters of the model are
very poorly known from experiment. Considerable extra
freedom is therefore introduced to an already rich set of
equations. In order to bring out as much physical understand-
ing as possible for natural sleep, we use a restricted, physi-
ologically plausible set of parameters. However, we choose
to retain the two spatial dimensions since we wish to remain
with a realistic model of the cortex, rather than working with
the same equations in one spatial dimension. A one-
dimensional analysis looking particularly at the bifurcations
of the system has recently been performed by Kramer et al.
�14�.

Since the phenomenon of sleep is a global property of the
cerebral cortex, we use a homogeneous form of the equa-
tions. However, there are obvious spatial differences in the
EEG spectra indicating that there are variations in parameters
across the cortex. Since the EEG and cholinergic modulation
of changes in sleep are most marked frontally, the model
could be considered to be representative of the frontal cortex.

An application of these equations to anaesthesia was per-
formed by Steyn-Ross et al. in 1999 �20�. They solved the
equations in the spatially homogenous and static case �the
solutions of the equations with Ve and Vi constant in time and
space� in the absence of noise. In some cases multiple sta-
tionary states were found for the same set of input param-
eters, resulting in the hypothesis that the cortex undergoes a
first-order phase transition during application of anaesthetic.
By considering the noise-induced fluctuations about these
stationary states, in the limit of the synaptic time-scale being
much less than the somatic time-scale �the adiabatic limit�,
they showed that this model predicted a strong increase in
low-frequency power at the approach to transition, in agree-
ment to what is seen experimentally during the application of
anaesthetics to patients �21�.

Steyn-Ross et al. have recently applied the adiabatic
stationary-state methodology to natural sleep, in order to ex-
plain phenomena seen in EEGs such as the marked increase
in low-frequency oscillations on the approach to REM
�17,22�. In this paper we build from this work and consider
the dynamics of natural sleep using explicit modelling of
neuromodulators with a modelling approach in the manner of
Liley et al. �11�.

We assume that build up of somnogen substances during
the course of prolonged wakefulness causes a propensity to
sleep �the sensation of tiredness�. The archetypal and most
studied somnogen is adenosine �other somnogens have been
shown to have similar molecular actions to those of adenos-
ine�. Broadly speaking, a buildup of adenosine will result in
an effective reduction of the cell’s resting potential �23�.
Therefore a term �Ve

rest is added to the excitatory resting
potential in Eq. �A1�—an increase in adenosine will result in
a reduction in �Ve

rest �i.e., it becomes less positive or more
negative�, encouraging a low-firing state. The neuromodula-
tor acetylcholine �ACh� is also important for sleep modelling

since it is absent in slow-wave sleep but abundant in REM
sleep, and has a key role in the transition between the two
�23,24�. This neuromodulator acts against adenosine, in-
creasing �Ve

rest but at the same time reducing the strength of
the EPSP �25�. A scaling of the EPSP with a dimensionless
factor � is therefore introduced into Eqs. �A1� and �A2� of
the Appendix, which now become

�e
dVe

dt
= Ve

rest + �Ve
rest − Ve + ��e�ee�ee + �i�ie�ie,

�2.1�

�i
dVi

dt
= Vi

rest − Vi + ��e�ei�ei + �i�ii�ii. �2.2�

The parameters � and �Ve
rest are used as control param-

eters in our model, defining a sleep domain in two neuro-
modulator dimensions. Experimentally, there is a well-
documented abrupt transition in the cortex, from a state of no
cholinergic modulation �slow-wave sleep� to a high cholin-
ergic state �REM sleep� �23,24�. However, it is difficult to
identify whether this increase in ACh is driven primarily
from activation of tegmental pontine cholinergic nuclei, or
arising secondarily from the cortical transition itself. How-
ever, the subsequent effects on the dynamics of our cortical
model are not dependent on the origin of this change in ACh.
This is the subject of further work. Therefore, when we refer
to changes in �Ve

rest and � and their implication for the mod-
elling results, we do not imply per se that it is these changes
that cause the transition between slow-wave and REM sleep
to occur.

III. METHOD

We start with the stationary-state solutions of Steyn-Ross
et al. �17�, for Eqs. �2.1�, �2.2�, and �A3�–�A8�. We choose
values for the parameters based on those of Rennie et al.
�12�, listed in Table I in the Appendix. The stationary states
are plotted in Fig. 1. It is clear that for part of the domain,
multiple stationary states are available.

In contrast to the adiabatic case, we look at the stability of
these stationary states without assuming the events at the
synapses are fast compared to those at the somas. By per-
forming an eigenvalue analysis we will show that instabili-
ties arise where none would be present in the adiabatic limit.
This region of instability is found to be very sensitive to the
duration of the IPSP. We then look at the noise-induced tem-
poral and spatial fluctuations about a stationary state, evalu-
ating an exact power spectrum using an Ornstein-Uhlenbeck
analysis. This spectrum is confirmed by performing simula-
tions on a finite grid. Behaviors such as limit-cycles are also
illustrated and related to the stability of the manifold of Fig.
1. These limit cycles can exist at points on the sleep domain
where a stable stationary state exists, but cannot be consid-
ered as small perturbations around a stationary state. Finally,
we use grid simulations to illustrate how a transition between
two sleep states occurs, showing that a REM state can be
seeded from fluctuations in a slow-wave sleep state. Where
appropriate, we make reference to features seen experimen-
tally in EEGs or measured through intracellular recording.
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A. Stability analysis

To begin our stability analysis we decompose the six
second-order equations �Eqs. �A3�–�A8�� into pairs of first-
order equations, which, along with Eqs. �2.1� and �2.2�, give
a total of fourteen coupled first-order differential equations in
time. This procedure is detailed in the online supplementary
material that accompanies this paper �35�. The noise is as-
sumed to enter the cortex through the subcortical inputs �ab

sc .
We write these with reference to their long-term averages. In
Eqs. �A3�–�A6� of the Appendix, without loss of generality,

�ab
sc �r�,t� = ��ab

sc � + �ab�r�,t����ab
sc � , �3.1�

where the a, b, c, and d suffices take on the labels e and i and
the �·� average is taken over time. The noise is described by
the terms �ab�r� , t�. To look at the stability of the system, we
remove the noise term. Then we perform a first-order series
expansion in time about the stationary state. We define
uniquely any state of the system by its 14-dimensional state
vector y��r��, which contains the variables Ve, Vi, �ee,
d�ee /dt, �ei, d�ei /dt, �ie, d�ie /dt, �ii, d�ii /dt, �ee,
d�ee /dt, �ei, and d�ei /dt. These are all functions of space
�r��, and Eqs. �A3�–�A8�, �2.1�, and �2.2� describe explicitly
how these evolve with time t. We then assume a small plane-
wave perturbation of the system in two-dimensional space of
wave vector q� , about the stationary point y�eqm. We obtain

y��r�� = y�eqm + �yq� exp�iq� . r�� , �3.2�

where the dynamics can be written as a simple matrix equa-
tion

d

dt
��yq� � = − A�q���yq� . �3.3�

Here A is a sparse 14	14 matrix which contains all the
dynamics of the system; it is dependent upon the choice of
wave vector q� . The superscript q on �y�q explicitly denotes
that this deviation from the stationary state is as a result of a
perturbation with a wave vector q� .

In order for the system to be stable to small perturbations
about its stationary point, we require the real parts of all the
eigenvalues of −A to be negative, for all q� . Rather than rely
completely on a computer evaluation of the eigenvalues, we
choose to proceed analytically where this is possible, to give
us insights into the system.

The �2 term of Eqs. �A7� and �A8� generates a −q2 term
under the substitution of Eq. �3.2�, where q= 	q� 	, leaving a
14	14 algebraic matrix −A�q� to diagonalize. By assuming

ee=
ei, 
ie=
ii, Nee

� =Nei
� , Nee

� =Nei
� , Nie

� =Nii
� and ee=ei

�see Table I�, elementary row operations allow the retrieval
of six eigenvalues quite straightforwardly: −
ee �twice�; −
ii
�twice�; and −vee± ivq. These eigenvalues can immediately
be identified as physically meaningful; they correspond to
the synaptic rate constants and a wave of wave vector q
propagating in space but decaying in time. The real parts of
these eigenvalues are all negative, indicating that these ei-
genvalues do not lead to instabilities.

We are left with a lengthy but explicit eighth-order poly-
nomial expression to solve numerically for the remaining
eight eigenvalues. We do not reproduce it in this paper. In
some cases we find that the real parts of some of the eigen-
values of −A �usually a pair� are positive. This corresponds
to an instability.

The choice of wave vector q is important here. We find
that some eigenvalues, usually a single pair �plus the com-
plex pair derived analytically above� are particularly sensi-
tive to q. In all cases we have studied, increasing q decreases
the real part of the eigenvalues �i.e., makes them less positive
or more negative�. The perturbations that are most likely to
lead to instabilities are therefore those with q=0. This obser-
vation agrees with that made by Robinson et al. using a
different model �26�.

B. Power spectrum in time and space

By writing the equations in a stochastic form �an
Ornstein-Uhlenbeck process �27�� we can use spectral analy-
sis to evaluate the power spectrum at points in the sleep

FIG. 1. �Color online� A plot
of Ve for the stationary states in
the sleep domain, using the stan-
dard parameter set of Table I.
Note how there are multiple sta-
tionary states for a region of the
sleep domain at negative �Ve

rest.
The thick line on the diagram
marks the turning points �where
the gradient is infinite�. Source:
Modified from Ref. �17�.
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domain. This process is described in detail in the online
supplementary material �35�. Since the analysis is confined
to fluctuations about stationary states, it is only valid in the
region of the domain where stationary states exist. We will
work with a model of the cortex that consists of a rectangular
array of N discrete macrocolumns, with spatial dimensions
Lx	Ly. Each macrocolumn is identified uniquely by a posi-
tion vector r�. We assume that the noise input into each mac-
rocolumn has a white-noise spectrum; it is uncorrelated in
time and uncorrelated with noise input into other macrocol-
umns. Although in practice this is probably not the case, such
a choice is consistent with the fidelity of our model. We
therefore define the �ab�r� , t� terms in Eq. �3.1� as having the
statistics

��ab�r�,t�� = 0, ��ab�r�,t��cd�r��,t��� = �ac�bd�r�,r�
� ��t − t�� .

�3.4�

With uncorrelated noise, all spatial Fourier components of
the noise terms contribute equally to the total power in the
system; we can simply sum over all modes with an appro-
priate normalization term to find the total power.

By expanding Eqs. �A3�–�A8�, �2.1�, and �2.2� about the
stationary solution, we write them in the form

d

dt
��y��r�,t�� = − Â�y��r�,t� + �� �r�,t� , �3.5�

where Â is a 14	14 matrix describing the dynamics in the
absence of noise, and �y��r� , t� describes the displacement of

y��r� , t� from the adiabatic solution. The vector �� describes the
noise inputs; the four nonzero components are given by:

� j�r�,t� = �ab�r�,t�
ab
2 ���ab

sc � . �3.6�

Here the j-th component of �� is nonzero when j is the com-
ponent of the vector that contributes to the equation for the
time-derivative of the synaptic flux a to b.

We can write Eqs. �3.5� and �3.6� in terms of their spatial

Fourier components �y�q and �� q in reciprocal space. The time
evolution of each q-th Fourier component of the displace-
ment vector �y� then obeys a separate Ornstein-Uhlenbeck
process.

Following Chaturvedi et al. �28�, we can write down a
power fluctuation for each Fourier component s�q� ,�� as:

s�q,�� =
1

2�
�A�q� + i�I�−1D�AT�q� − i�I�−1, �3.7�

where the components of the 14	14 diffusion matrix D are
defined as:

Djk = � jk
ab
4 ��ab

sc �/N, for contributing j

= 0, otherwise, �3.8�

where a and b can take on the labels e and i as before, and N
is the number of macrocolumns.

Requiring that the function �3.7� integrated over all
q�-modes and frequencies gives the total power averaged over
the macrocolumns gives our final result

S�q,�� =
LxLy

8�3 �A�q� + i�I�−1D�AT�q� − i�I�−1, �3.9�

where S is now a continuous function describing the power
fluctuation per unit frequency per unit area of reciprocal
space at any frequency and spatial wave vector.

Note that since D is inversely proportional to N, the num-
ber of macrocolumns, S is an intensive quantity, meaning it
does not scale with Lx and Ly. Of particular interest to us is
the power fluctuation in the excitatory soma potential Ve,
since it has been shown that the power fluctuations in Ve
correlate well with the power fluctuations observed in the
EEG �19�. Therefore we will look at the matrix element
Sjj�q ,�� where the label j corresponds to Ve.

C. Grid simulations

We have performed grid simulations on the full set of
equations in two-dimensional space. We used a regular
square grid to represent the cortex in space, and iterated the
full equations in time using an order-one Euler predictor-
corrector method �29�. Figure 2 shows an example grid.
Noise is fed into the system through the subcortical terms, in
the form of a Wiener process. To do this we remove the
time-dependent component of the �ab

sc terms from Eqs.
�A3�–�A6� and add these in explicitly as the stochastic term.
The equation for the change in the state-vector y� in a time-
step �t is

FIG. 2. An example of a grid used in the simulations. The rect-
angular cortex area Lx	Ly �solid box� is partitioned into N grid-
squares, each of area �x�y. Each gridsquare contains a large num-
ber ��x�y /amc� of macrocolumns; the bottom left square shows an
example. A single gridpoint is placed at the center of each grid-
square, indicated by the crosses. The continuous function y��r� , t� is
represented in a discrete form by its values at each gridpoint at a
time t; the value of y� at each gridpoint in effect represents the mean
behavior of the macrocolumns over the gridsquare.

WILSON et al. PHYSICAL REVIEW E 72, 051910 �2005�

051910-4



�y� = f��y���t + �W� /n , �3.10�

where f� is the explicit function of y� that describes the dy-

namics of the system and �W� is a noise term �which scales as
��t�1/2�. Here n represents the density of macrocolumns
�number of macrocolumns accounted for by each gridpoint�.
The noise is chosen to be pure-white noise, uncorrelated in
space. Ideally a Poisson process would be used to model the
arrival of uncorrelated action potentials. In this case, the
mean number of subcortical events per time-step per grid-
point for type a neurons to type b neurons �a and b taking on
labels e and i� would be given by n�t��ab

sc �. The total random

term �W� in Eq. �3.10� would then be a value taken from a
distribution with this mean, multiplied by 
ab

2 , for the four
components which contain noise inputs. The factor 1 /n in
Eq. �3.10� is then required in order for �y� to be an increment
per macrocolumn. In order to decrease the computation time,
we approximate the Poisson distribution by a Gaussian. Typi-
cally we use a time step of about 0.2 ms, and a grid of 32
	32 points with a grid spacing of around 15 mm. Cyclical
boundary conditions are used since a more appropriate way
of modelling edge effects in the cortex has not yet been
robustly established. The one complication in the process is
the treatment of the �2 term. This is achieved with a nearest-
neighbor finite-difference scheme.

For the simulations of this paper we always start the sys-
tem in a stationary state. The fluctuations usually build up
rapidly to establish an equilibrium spectrum, or the noise and
dynamics take the system away from this stationary state and
into either another, or into a limit cycle. Once an equilibrium
has been established, the fluctuation spectrum, in terms of
frequency and wave number, is calculated by employing
Fourier transforms in space and time on approximately
twelve epochs each of ten seconds of data, and averaging the
results.

IV. RESULTS AND DISCUSSION

A. Stability of the sleep domain

We begin by presenting a typical result for the stability of
the sleep domain. We choose a standard set of physiologi-
cally plausible parameters drawing from those suggested by
Rennie et al. �12�, as shown in Table I. Unless stated other-
wise, it can be assumed that the results presented in this
paper correspond to this standard set. Although a typical cor-
tex might have parameters different from this, we find that
the underlying physics, on which we wish to concentrate, is
not strongly dependent upon the choice of parameters.

Figure 1 shows graphically the stationary state value of Ve
across the domain. Across most of the domain, we see that
there is just one stationary state; however, for a small region
there are three stationary states. This leads naturally to the
view that phase transitions can occur in the cortex �17,19�. In
our model we identify the upper state as being REM sleep,
and the lower state as corresponding with slow-wave sleep;
the nature of the fluctuations about these states and the low-
frequency power surge seen experimentally on transition
from slow-wave to REM sleep �22� provides the major evi-
dence for this interpretation.

Figure 3 shows the stability of these states. There is a
small lakelike region where the linearized system has a pair
of eigenvalues with positive real part, corresponding to an
instability. The real parts of these eigenvalues are most posi-
tive when q=0; results indicate they reduce monotonically as
q increases. As an example, Fig. 4 shows the real part of the
eigenvalues as a function of q at the point ��Ve

rest=5.0 mV,
�=0.7�. At all points within the “lake of instability” the sys-
tem has a single stationary state, which is unstable. On the
boundary, there is always a nonzero imaginary part to the
eigenvalues, suggesting temporal oscillations will occur
when the system moves into the “lake of instability.”

We start our discussion by demonstrating in Fig. 5 the
stability of a point ��Ve

rest=5.0 mV, �=0.5� outside the un-
stable region. Grid simulations show that fluctuations occur

TABLE I. The standard parameters used throughout this paper,
except where stated otherwise. In this Table the suffix a can take on
the labels e and i. The values are taken mostly from the paper of
Rennie et al. �12�. Although there is considerable uncertainty in
these parameters, they form a plausible set that is sufficient for the
purposes of elucidating much of the physics of the cortical model. It
is quite possible that further physical effects can be produced by
varying these parameters sufficiently.

Parameter Description Standard Value

�e,i membrane time constants 0.04, 0.04 s−1

Qe,i maximum firing rates 30, 60 s−1

�e,i sigmoid thresholds −58.5, −58.5 mV

�e,i standard deviation
for threshold

4.0, 6.0 mV

�e,i gain per synapse
at resting voltage

0.001,
−0.00105 mV·s

Ve,i
rev reversal potentials

at synapse
0, −70 mV

Ve,i
rest cell resting potential −64, −64 mV

Nea
� long-range e to e

or i connectivity
3710

Nea
� short-range e to e

or i connectivity
410

Nia
� short-range i to e

or i connectivity
800

��ea
sc � mean e to e

or i subcortical flux
750 s−1

��ia
sc� mean i to e

or i subcortical flux
1500 s−1


ea excitatory synaptic
rate constant

300 s−1


ia inhibitory synaptic
rate constant

65 s−1

Lx,y spatial length of
cortex in model

500 mm

amc area of macrocolumn 1 mm2

ea characteristic inverse
length-scale for
connections

0.2 mm−1

v mean axonal conduction speed 1400 mm s−1
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but the system never moves far from its stationary state. This
behavior is to be expected.

In contrast, in Fig. 6, we look at a point inside the lake.
Figure 6 shows the excitatory and inhibitory firing rates at
one grid point as a function of time, for ��Ve

rest=5.0 mV, �
=0.7�. The simulation has been started at the stationary state,
but the dynamics are quickly established by the introduction
of noise. The system oscillates with a frequency of approxi-
mately 4 Hz; this corresponds to the value of the imaginary
part of the unstable pair of eigenvalues, divided by 2�. Re-
duction in the IPSP rate constant, 
i, leading to an IPSP that
is prolonged in time but carries the same total charge, gives

a reduced frequency. �Since 
ii=
ie in this work we use a
single suffix without ambiguity.� Variation of the other pa-
rameters �soma response times, EPSP duration� that do not
affect the position of the stationary states do not lead to
significant changes in the frequency of oscillations. The lake
of instability as demonstrated in Fig. 6 corresponds to a su-
percritical Hopf bifurcation; i.e., fluctuations of a character-
istic frequency can be seen to build in magnitude as the
unstable region is approached. This is discussed further be-
low.

FIG. 3. �Color online� A plot of the sleep domain showing a
region of multiple stationary states and a region of a single, unstable
stationary state, for the parameters of Table I. The instability of the
point marked � is predicted in Fig. 4 and demonstrated in Fig. 6.
The point marked � lies outside the lake of instability; its stability
is demonstrated in Fig. 5.

FIG. 4. A plot of the real part of the largest eigenvalue pair
against q, taken in the unstable region of the domain �point � in
Fig. 3�. In this case, for small q the real part of the dominant
eigenvalue is positive, denoting an instability.

FIG. 5. A plot of �a� the excitatory and �b� the inhibitory firing
rates for two locations in space �thick and thin lines� for the point �

��Ve
rest=5.0 mV, �=0.5� outside the unstable lake of Fig. 3. In this

case the system is stable to random noise input and never deviates
far from the stationary state �shown by the dashed horizontal line�.
There is little spatial correlation but there is some correlation be-
tween e and i firing rates.

FIG. 6. A plot of the excitatory �solid line� and inhibitory
�dashed line� firing rates against time, for the point � ��Ve

rest

=5.0 mV, �=0.7� in the unstable lake of Fig. 3. A small perturba-
tion from the intial stationary state grows until the system reaches a
limit cycle of frequency �4 Hz.
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In terms of spatial distribution, the model cortex is usually
highly synchronized in space; there is little difference be-
tween the soma potentials at different gridpoints. Where spa-
tial fluctuations exist, the larger wavelengths �smaller q�
dominate, consistent with the observation that the most posi-
tive �or least negative� real parts of the eigenvalues, corre-
sponding to the most prolonged states, occur for the smallest
values of q. We will look at these spatial fluctuations in more
detail later.

Let us now comment on how the situation changes with a
different parameter set. We find that the size of the unstable
“lake” of Fig. 3 is particularly dependent upon the choice of

i. This is to be expected since it is this term that governs the
rate at which negative �stabilizing� feedback is applied to the
system. A small 
i corresponds to an IPSP that is spread out
in time, as shown in Fig. 7; this allows positive feedback
from the excitatory-excitatory route to build up before being
quenched. Typically a delay in application of negative feed-
back leads to an instability, so this result is not surprising.
Figure 8 shows the stability of the sleep domain when 
i is
reduced from 65 s−1 to 15 s−1. The unstable lake has now
grown into the the area of three stationary states. This means
that either or both of the upper and lower branches, in addi-
tion to the midbranch, can become unstable. The system can
therefore be prepared in a state where there are multiple sta-
tionary states, but none of them stable.

B. Limit cycles

Where no stable stationary-states exist, the system enters
a limit cycle. The system cannot diverge, since the reversal
potentials acting through the � jk terms �Eq. �A9�� ensure that
the soma potentials Vk are confined to the range Vi

rev�Vk
�Ve

rev �where j and k can take on the labels e and i� leading
to saturations in activity.

Grid simulations have been carried out for a number of
cases for points on the sleep domain. First, shown in Fig. 9,
is a simulation for the point ��Ve

rest=−1.8 mV, �=1.15� on
the sleep domain with 
i=15 s−1. The simulation has been
started on the lower branch, and quickly establishes itself
into a limit cycle. The firing rates fluctuate between low and
high in a regular way, with the excitatory and inhibitory neu-
ron firing rates remaining in-phase. The frequency here is
around 1.4 Hz, lower than the case of Fig. 6. Simulations at
other points in the unstable region of the sleep domain are
able to recover frequencies between these values. As for the
case of Fig. 6, changes in most modelling parameters do not
have a great deal of impact on the frequency. However, a
reduction to 
i=10 s−1 gives a reduction in frequency to
1.1 Hz. The low-firing to high-firing regular oscillation is
possibly representative of a spike-wave seizure state �14,30�.

Secondly, we consider the case where only one of the
three branches is stable. It might be expected that a cortex
prepared in one of the unstable stationary states would find
its way quickly to the third stable state. In some cases this is
what happens. However, the system can also enter a limit
cycle even though a stable, stationary state is available to it.
Figure 10 elucidates this situation by plotting the path of the
system in one hyperplane of configuration space – namely
excitatory-to-excitatory and inhibitory-to-inhibitory synaptic
fluxes. In this plot, the system has been prepared a number of
times on the upper branch, which, in this case, is unstable,
and the trajectories in phase space have been plotted with
time. The figure shows that in some cases the random part of
the subcortical input pushes the system into the stable, lower
state, but in others the system moves into a high- to low-
pulsing limit cycle, cycling around the stationary states �in
this hyperplane�.

FIG. 7. The magnitude of the inhibitory postsynaptic potential
impulse response against time. The three curves �solid, dashed, and
dotted� correspond to values of 
i of 65, 42, and 15 s−1, respec-
tively. All three have the same area �=�i� but the largest 
i results in
the most rapid transfer of charge across the synaptic junction.

FIG. 8. �Color online� A plot of the stability of the sleep domain
for a decrease in 
i to 15 s−1. The unstable lake on the right has
now grown into the region of multiple stationary states. Five pos-
sibilities exist: One stable state; one unstable state; three unstable
states; one stable and two unstable states, and two stable and one
unstable state �the midbranch is always unstable�. The unmarked
region of the figure corresponds to a single, stable state. See Fig. 9
for a simulation at the point � �three unstable states, coordinate
��Ve

rest=−1.8 mV, �=1.15��.
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This limit cycle is extremely persistent. A system in such
a limit cycle can maintain it even when �Ve

rest is changed so
that it moves into a region of the sleep domain where there is
a single stable stationary state. In Fig. 11 we have prepared
the system in a limit cycle in the multiple state region of the
sleep domain, and then slowly increased �Ve

rest until we have
moved into a single state region, with this stationary state
stable. Rather than collapsing into this stationary state, the
system maintains its high-to-low pulsing limit cycle. Only
when �Ve

rest is increased further does this cycle stop allowing
the system to move into the stationary state. It is clear that
this behavior cannot be treated with the linearized fluctuation
theory presented earlier.

The almost binary behavior of Figs. 9–11 are reminiscent
of the cortical phenomena of the cortical slow oscillation �2�
and spike-wave seizures. Steriade et al. �30� has shown that
the oscillations are in some ways connected; specifically the

seizure can grow smoothly from the slow oscillation. In the
slow oscillation, the cortex flips between a low-firing state
and a high-firing state �similar to REM� with a frequency of
1 Hz or lower. In seizures brought on, for example, by the
anaesthetic enflurane �which lengthens the IPSP in time
�31��, the cortex jumps between very low and very high fir-
ing states. Traditionally neuroscientists have explained corti-
cal oscillations as being caused by either delay reverbera-

FIG. 9. A plot of �a� the excitatory and �b� the inhibitory firing rates at two locations on the cortex �black and gray lines� as a function
of time, at a point in the sleep domain where there are multiple stationary states, but all are unstable. This is the point labelled � in Fig. 8,
namely ��Ve

rest=−1.8 mV, �=1.15, 
i=15 s−1�. The cortex exhibits a pulsing rhythm with the excitatory and inhibitory neuron firing rates
being in phase. The cortex also rapidly synchronizes itself in space, with the firing rates at the two different points becoming more in phase
as time increases.

FIG. 10. �a� A plot of the excitatory and inhibitory input fluxes
��ee and �ii� for two different random noise configurations. In both
cases the system is started on the unstable upper branch �marked 	
on the left-hand panel�. In one case the noise triggers the system to
collapse onto the stable lower branch �thin line�; in the other case
the system enters a limit cycle that orbits the stationary states �thick
line�. The right panel �b� is an enlargement of the left, in the vicinity
of the lower branch. This plot is for 
i=15 s−1 at the point ��Ve

rest

=−1.8 mV, �=1.075� in the sleep domain.

FIG. 11. The firing rates against time as the parameter �Ve
rest is

varied. The top graph �a� shows a plot of the stationary state solu-
tion for Ve against �Ve

rest for �=1.26 mV. The upper branch is
stable throughout, the lower and midbranches are unstable for the
region shown on the graph. The bottom graph �b� shows a simula-
tion in which �Ve

rest is slowly raised. The time axis of this graph
corresponds with the �Ve

rest axis of the top graph. Initially �at t=0�,
the system is started on the midbranch at the point ��Ve

rest

=−2.5 mV, �=1.26, 
i=15 s−1� in the sleep domain and rapidly
establishes a limit cycle. As time progresses, �Ve

rest is increased at a
constant rate so that the system moves into part of the sleep domain
where there is a only single stable state. The system continues to
oscillate. These oscillations are only quenched when �Vrest is in-
creased still further.
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tions in subcortical-cortical circuits, or, at the level of
individual neurons, oscillations in various membrane cur-
rents �1,3,4�. It would appear that these explanations may be
sufficient, but are not necessary, for the causation of cortical
rhythms.

Finally, we remark on another limit-cycle that is available
to an oscillatory system, namely that of spiral waves. These
persistent features can sometimes generate when a simula-
tion is run through an unstable region of the sleep domain.
The spiral waves are spatially structured states consisting of
pairs of rotating spirals. Figure 12 shows a gray scale plot of
Ve�r�� at a given time. Specifically, this simulation involved
starting the system on the stable, upper branch and then, by
reducing �, moving it through the unstable region into the
region where the lower branch is stable. Experimentally, spi-
rals have been observed in disinhibited cortical slices �32�
and demonstrated in neuron models with no inhibition
�32,33�. However, their presence in the cortex and their re-
lationship with states such as epileptic seizures is unclear.

C. Power spectrum

We now turn to look at the power spectrum. This can be
studied in two ways. First, for the case of a stationary state,
we can use Ornstein-Uhlenbeck analysis �27� to find the lin-
earized power spectrum S�q ,�� of fluctuations about the sta-
tionary state. This is a fast calculation, and enables us to
study large areas of the sleep domain. Secondly, we can ob-
serve power fluctuations in a grid simulation. We run a simu-

lation for several �typically 60� seconds of simulation time,
and record, for example, the soma potentials at each point on
the grid at equally spaced time intervals. These time intervals
�typically 0.02 seconds� are much larger than the Euler time
step since this reduces the amount of computer memory re-
quired. They control the Nyquist frequency for the spectrum.
Finally we use a Fourier transform in time to recover fre-
quency behavior �checking for possible aliasing artifacts�,
and Fourier transforms in space to recover spatial behavior.

First we look at the spectrum for a point on the sleep
domain ��Ve

rest=−4.0 mV, �=1.26, 
i=65 s−1�, where only
the midbranch is unstable �see Fig. 3�. We simulate the sys-
tem on the lower, stable branch of the multistate region,
close to transition. In this case, the power spectrum of the
excitatory soma potential, shown in Fig. 13�a�, shows large
fluctuation energy at low frequencies. Such high-amplitude,
low-frequency fluctuations are entirely consistent with the
approach to a first-order phase transition. These fluctuations
would show themselves in an EEG as the low-frequency
power surge during the approach to REM sleep �19�. In Figs.
13�b� and 13�c� we show the build up of this power as �Ve

rest

is moved to approach the transition. At a slightly higher
value of �Ve

rest, there is a single stationary state, this time
corresponding to the top branch. The spectrum, shown in
Fig. 13�d�, shows that fluctuations are low in magnitude and
are at a wide range of frequencies. For reference, a compari-
son of power spectra and EEG is shown in Fig. 14.

The peak of S�q ,�� occurs on the q=0 axis, consistent
with the results of the eigenvalue analysis, namely that q
=0 is the least stable mode �i.e., the dominant eigenvalues at
q=0 have a less negative real part than those for higher q�.

We now look at a point that is close to the unstable lake
�point � of Fig. 3�. An Ornstein-Uhlenbeck analysis, in Fig.
15�a�, shows that the spectrum contains a distinct peak at
approximately 4.5 Hz, for 
i=65 s−1. This frequency is also
clearly seen in the simulations. A grid simulation has been
used to generate a power spectrum in both time and space;
this is shown alongside the predicted spectrum in �b�. The
two are in close agreement. This peak could possibly corre-
spond one of a number of resonances that occur in resting
EEGs, perhaps the delta waves that are seen in slow-wave
sleep �1�. In Figs. 15�c� and 15�d� we show the point for the
case of 
i=53 s−1, and in 15�e� and 15�f� the case of 
i
=46 s−1 corresponding to a growth in the lake of instability
so that the point � is now on the edge of the lake. The power
spectra now show a much more pronounced peak at 4.5 Hz,
showing the Hopf nature of the bifurcation. Note that the
frequency of the peak changes little with 
i; also that the q
=0 �breathing� mode is dominant at the edge of the bifurca-
tion.

D. Transition between states

We now look at the transition between the lower and up-
per branches of Fig. 1 in more detail, for the case where both
branches are stable. We have performed a simulation in
which we start the system on the lower branch, very close to
the turning point. Figure 16 shows a series of plots of the
excitatory soma potential Ve as a function of spatial coordi-

FIG. 12. A snapshot of a spiral wave generated by the cortical
model �white is high Ve, black is low Ve�. In order to trigger the
formation of spirals, the system was started on the stable region of
the upper branch ��Ve

rest=0.5 mV, �=1.75, 
i=33 s−1� and � was
rapidly lowered �over approximately 7 seconds� through the un-
stable region and into the region of the domain where just one,
stable state exists. The resulting spiral wave is extremely persistent
and requires a considerable further reduction in � in order to de-
stroy it.
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nate, as time increases. Also shown is a gray scale represen-
tation of Ve�r� , t� for one line through the cortex �passing
through the point where the transition is seeded�. We have
chosen the parameters �Ve

rest=−1.8 mV, �=1.25, and 
i
=65 s−1. This close to the turning point, the fluctuations are
such that eventually one grid point will depart from the sta-
tionary state by a large enough amount to overcome the po-
tential barrier between the lower and upper states. When this
happens, the dynamics takes over and the system at this point
in space will be dragged into the more stable upper state. The
spatial terms in the equations, specifically the �2 term of
Eqs. �A7� and �A8� then encourage the rest of the cortex to
follow into the more stable state. The figure indicates how

the transition to the upper branch occurs at one spatial point
to start with, and then grows in space, slowly drawing the
whole cortex up to the upper branch. At intermediate times,
it is possible for the cortex to be simultaneously in upper and
lower states. The transition from slow-wave sleep to REM
occurs over a finite time, in this case about 0.5 s. This is in
broad agreement with the intracellular and electrocortico-
gram recordings of cats of Steriade et al. �2� and Bazhenov et
al. �4�, which show the transition zone to be of order one
second in time.

We have also simulated the case where the lower branch
is unstable but the upper is stable, using the parameters
�Ve

rest=−1.0 mV, �=1.123, and 
i=41 s−1. In this case the

FIG. 13. �Color online� This figure shows the power spectrum predicted by Ornstein-Uhlenbeck analysis either side of the lower- to
upper-branch transition at �=1.26 with 
i=65 s−1. Note that the vertical scale of the plots is different. The first plot �top left� shows the
power spectrum on the lower branch at �Ve

rest=−4 mV; we identify this with slow-wave sleep. The second and third plots show how the
spectrum changes on the approach to transition. The final plot �bottom right� shows the power spectrum on the upper branch at �Ve

rest

=−1 mV; we identify this with REM sleep. The slow-wave plot shows a large power buildup at the lowest frequencies. Low spatial wave
vectors indicate that the cortex has considerable synchronization over space. The REM sleep shows a much broader range of frequencies
with lower powers than for slow-wave.
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system naturally enters a limit cycle when started on the
lower branch. However, fluctuations can be large enough to
bring part of the cortex into the stable upper branch; from
then on the spatial terms are large enough to ensure that the
rest of the cortex, still oscillating, is slowly drawn into the
same stable state. In Fig. 17 we plot the excitatory firing rate
against time for two points in space. The larger magnitude
oscillations at the two points are quenched at different times,
depending upon the distance of each point from the point of
first transition. We also show a gray scale plot of Ve�r� , t� for
a one-dimensional �1D� slice through the cortex �containing
the point of first transition�. Note how the cortex continues to
oscillate after the transition.

V. CONCLUSIONS

In this paper we have used a mean-field macrocolumn
model of the cortex in the manner of Liley et al. �11� to
explore some of the dynamics of natural human sleep, focus-
ing on the physical interpretation of the effects. A rich vari-
ety of oscillatory behavior is intrinsically present in the
model; this can explain many features found in intracellular
recordings and EEGs. We have studied in particular the tran-
sition between slow-wave sleep and REM sleep, which can
be understood in terms of a first-order phase transition, ex-
hibiting many hallmarks such as buildup of low frequency

oscillations and increases in spatial correlations. Transition
from one state to another can result from random fluctuations
at a single point being sufficient to “seed” the other state.
Instabilities in the stationary states might be key to under-
standing oscillations in soma potential akin to those seen in
slow-wave sleep and seizures. Traditionally neuroscientists
have explained cortical oscillations as being caused by either
delay reverberations in subcortical-cortical circuits, or, at the
level of individual neurons, oscillations in various membrane
currents. It would appear that these explanations might be
sufficient, but are not necessary, for the causation of the cor-
tical rhythms.

In addition to natural sleep, the model will continue to
improve our understanding of anaesthetics and has the po-
tential to give insights into the physics of seizure states.

There is still considerable work required in order to un-
derstand the origin of many of the features observed in the
human EEG. Although many sleep phenomena �e.g., the
slow oscillation� are driven by the cortex �4�, the thalamus
plays an important role by filtering sensory input. The thala-
mus develops and shapes sleep-spindles-distinctive short-
lived oscillations at about 14 Hz, and the low frequency
delta-rhythms seen during slow-wave sleep �1,34�. We intend
to incorporate this link into our cortical model in the future.

ACKNOWLEDGMENTS

The authors would like to acknowledge support from the
New Zealand Marsden Fund �Grant No. UOW307� and
thank Fisher and Paykel Healthcare for the data of Fig. 14.

APPENDIX

Here we describe the complete set of equations for the
basic mean-field cortical model. The equations have been
discussed in detail in Refs. �17,19�. Note that Eqs. �A1� and
�A2� are modified slightly by the introduction of acetylcho-
line and adenosine into the model, as described in Sec. II.

�e
dVe

dt
= Ve

rest − Ve + �e�ee�ee + �i�ie�ie; �A1�

�i
dVi

dt
= Vi

rest − Vi + �e�ei�ei + �i�ii�ii; �A2�


 d2

dt2 + 2
ee
d

dt
+ 
ee

2 ��ee = 
ee
2 �Nee

� �ee + Nee
� Qe + �ee

sc�;

�A3�


 d2

dt2 + 2
ei
d

dt
+ 
ei

2 ��ei = 
ei
2 �Nei

��ei + Nei
�Qe + �ei

sc�;

�A4�


 d2

dt2 + 2
ie
d

dt
+ 
ie

2 ��ie = 
ie
2 �Nie

�Qi + �ie
sc�; �A5�


 d2

dt2 + 2
ii
d

dt
+ 
ii

2��ii = 
ii
2�Nii

�Qi + �ii
sc�; �A6�

FIG. 14. EEGs recorded from a single subject in ��a�, left� slow-
wave and ��b�, right� REM sleep �solid lines�. �Data courtesy of
Fisher and Paykel Healthcare—the patient having consented for
data to be used for research purposes.� The data have been clipped
at 1 Hz to remove artifacts from the recording process and have
been smoothed. The dotted lines here represent the simulated S�q
=0,�� of Fig. 13 scaled by an appropriate factor. The slow-wave
has been represented by a point on the lower branch close to tran-
sition, namely ��=1.25, �Ve

rest=−1.8 mV, 
i=65 s−1�. REM has
been represented by a point with virtually identical parameters but
on the upper branch, namely ��=1.26, �Ve

rest=−1.8 mV, 
i

=65 s−1�. Although the slow-wave case shows a good fit to the data,
the mapping between S�q ,�� and EEG is complicated and not dis-
cussed further in this paper.
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FIG. 15. �Color online� The predicted and simulated power spectra for the point � of Fig. 3, ��Ve
rest=5.0 mV, �=0.5�. The first row

shows the predicted �a� and simulated spectra for 
i=65 s−1. The second shows predicted �c� and simulated �d� spectra for 
i=53 s−1, and
the third predicted �e� and simulated �f� spectra for 
i=46 s−1. In the case of �e� and �f� the unstable lake has grown so that our simulation
lies almost on the edge of the bifurcation. Note the vertical scales of the plots are not the same. In all cases the linearized prediction and
simulation are in very close agreement.
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 �2

�t2 + 2vee
�

�t
+ v2ee

2 − v2�2��ee = v2ee
2 Qe; �A7�


 �2

�t2 + 2vei
�

�t
+ v2ei

2 − v2�2��ei = v2ei
2 Qe. �A8�

In these equations Ve
rest and Vi

rest are the excitatory and
inhibitory neurons resting potentials and �e and �i are the
strengths of the EPSP and IPSP response functions �i.e., the
area of the plot of PSP response function against time�. Note
that the inhibitory effect is modelled with a negative �i. The
variables �ee, �ei, �ie, and �ii are weighting functions depen-
dent upon the soma potentials. They are given by:

�ab =
Va

rev − Vb

Va
rev − Vb

rest . �A9�

Here Va
rev is the reversal potential of the type a synapse, due

to the concentrations of the neurotransmitters AMPA and
GABA. The suffices a and b can take on the labels e and i.

The terms �e and �i describe the time constants for the e
and i neurons. The 
ab terms are synaptic rate constants;
their reciprocals give the time scales over which the EPSPs
and IPSPs occur. The mean axonal velocity for long-range
interactions is given by v and the characteristic length for

long-range interactions is given by 1/ea. Short-range inter-
actions are not modelled with axonal propagation but are
assumed to be instantaneous; the Njk

� terms couple directly
with the population firing rates Qk in Eqs. �A3�–�A6�.

The sigmoidal functions Qe and Qi, describing the popu-
lation firing rate of neurons, are given by:

Qe�Ve� =
Qe

max

1 + exp�− ��Ve − �e�/�3�e�
, �A10�

Qi�Vi� =
Qi

max

1 + exp�− ��Vi − �i�/�3�i�
. �A11�

Here we have introduced further parameters Qe
max and Qi

max,
the maximum firing rates for the excitatory and inhibitory
neurons respectively; �e and �i, the inflexion point voltage;
and �e and �i, the standard deviation of the threshold poten-
tial.

Finally, the Nab
� represent numbers of local intramacrocol-

umn connections from type a neurons to type b �again a and
b can take on the labels e and i�, and the Nea

� the number of
long-range connections from type e neurons to type a �note
that inhibitory neurons have no long-range projections�.
Noise enters the model through the �ab

sc terms, with each by a
stochastic process.

The list of standard parameters used is given in Table I.

FIG. 16. �Color online� The excitatory soma potential as a func-
tion of time, for the point ��Ve

rest=−1.8 mV, �=1.25, 
i=65 s−1�.
The left-hand diagram shows three locations as a plot of Ve against
time �specifically the point of initial transition and points 12.5 cm
and 25 cm from this�; the right-hand shows a gray scale plot of a
slice through space against time �black is low potential, white is
high�. Here the cortex starts on the lower branch of a multiple-state
region, but very close to the transition point. Noise fluctuations
eventually trigger one location on the cortex �close to the zero dis-
tance on the space axis� to move onto the upper branch. Once this
transition has occurred, the rest of the cortex is dragged onto the
upper branch. The complete transition takes about 0.5 s. Note that
there is initially an overshoot in Ve as the system moves into the
upper state.

FIG. 17. �Color online� A plot of excitatory soma potential
against time for locations in space for the point ��Ve

rest=−1.0 mV,
�=1.123, 
i=41 s−1�. The left-hand diagram shows two locations
as a plot of Ve against time; the right-hand shows a gray scale plot
of a slice through space against time �black is low potential, white
is high�. The cortex is in a region of multiple stationary states; the
lower state is unstable but the upper is stable. Initially the cortex is
placed on the lower branch and it quickly enters a limit cycle, since
this branch is unstable. However, at one location the cortex be-
comes trapped in the upper state. The rest of the cortex continues to
pulse. The trapped area of space slowly grows with time; eventually
the whole cortex has been drawn into the stable upper state.
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